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PART I. MODERN META-PHYSICS:
STRUCTURE OF PHYSICAL LAWS

e An isolated system : configuration/phase space X.

e Energy/action : function(al)s E,5: X — R.

e Classical partition function/quantum evolution :

Zr :=/ e~ E@/T Dy Vs Z:/ etS@) Dy
X X

e Probability density/quantum evolution operator :

1 BeyTp, 1 its()

Vs VA

NB Inverse temperature 7' <=> imaginary time it !

e Symmetries, scale invariance etc.




PART II: KOLMOGOROV COMPLEXITY

Zoo of complexities :

Logarithmic of combinatorial objects

Kolmogorov
complexity

Exponential of computable functions

An intuitive description :

e Logarithmic Kolmogorov complexity of w is defined as

the measure of compressibility of w :=
the length of the shortest program that can generate w




A representative example :

w := an integer N > 0, represented by N written dashes.
The length of its compressed description is < logy N + ¢,

and its exponential Kolmogorov complexity is < C' N.
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Symmetry group and fractality

e Symmetry group S’2¢: for any totally recursive permu-
tation o : Z; — Z,, there exists a constant ¢ = ¢(o) such
that difference of log—complexities of x and o(z) is < c.

e Fractality: For any infinite decidable subset D C Z_,,
the graph of log—complexity restricted upon D has, up to
additive O(1), the same form as the total graph.

n

Example: D := {n" (n times) |n=1,2,3,...}

e The standard application of symmetry: one can define
complexity for any objects of any infinite “constructive world”
X, for example, a language in the sense of comp. sci.

X comes with a computable numbering, and arbitrari-
ness in its choice (almost) does not influence the size of
complexity.



e Exponential complexity and Kolmogorov order.

Let X be a constructive world. For any (semi)—computable
function u : Z; — X, the (exponential) complexity of an ob-
ject r € X relative to u is

K, (z) := min{m € Z |u(m) = z}.

If such m does not exist, we put K,(z) = oc.



e CLAIM: there exists such u (“an optimal Kolmogorov
numbering”, or “decompressor”) that for each other v, some
constant c,, >0, and all z € X,

Klw) € ey lolm)

This K,(z) is called exponential Kolmogorov complexity
of z.

A Kolmogorov order of a constructive world X is a bi-
jection K = K, : X — Z arranging elements of X in the
increasing order of their complexities K.



e WARNINGS :

— Any optimal numbering is only partial function, and its
definition domain is not decidable.

— Kolmogorov complexity K, itself is not computable. It
is the lower bound of a sequence of computable functions.

— Kolmogorov order of Z, cardinally differs from the natural
order in the following sense: it puts in the initial seg-
ments very large numbers that can be at the same time
Kolmogorov simple.

— Example: let a, := n® (n times).
Then K,(a,) < cn for some c > 0.
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e MY CENTRAL ARGUMENT IN THIS TALK:

I will arque that there are natural observable and measurable phe-
nomena in the world of information that can be given a mathematical
explanation, if one postulates that logarithmic Kolmogorov complex-
ity plays a role of energy.

I will consider two examples: Zipf’s Law and asymptotic
bounds in the theory of error—correcting codes.
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PART III: ZIPF LAW AS “MINIMIZATION OF EFFORT”

e Consider a corpus of texts in a given language, make
the list of words occurring in them and the numbers of
occurrences. Range these words in the order of diminishing
frequencies. Define the Zipf rank of a word as its number
in this ordering.

e Zipf's Law (1935,1949) :

FREQUENCY

IS INVERSELY PROPORTIONAL TO THE RANK




Word frequency
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PICTURE:

Zipf’s distribution of Russian words(logarithmic scale)
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e Universality of Zipf’s law : the law is empirically ob-
served in very different databases, that allow one to calcu-
late frequency of occurrence of certain patterns (“words”) in
certain massifs of data.

e Example on the next page: patterns in financial audit
data.

e “Unlike the central limit theorem [ ... | this law is primarily an
empirical law; it is observed in practice, but mathematicians still do
not have a fully satisfactory and convincing explanation for how the
law comes about, and why it is so universal. ”

Terence Tao
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Decision Support Systems 46 (2008) 70-83

Contents lists available at ScienceDirect

Decision Support Systems

journal homepage: www.elsevier.com/locate/dss

An investigation of Zipf's Law for fraud detection (DSS#06-10-1826R(2))
Shi-Ming Huang?, David C. Yen®* Luen-Wei Yang?, Jing-Shiuan Hua®

@ Department of Accounting & Information Technology, National Chung-Cheng University, Chia-Yi, Taiwan, ROC
b Department of DSC & MIS, Miami University, Oxford, OH 45056, United States
¢ Department of Information Management, National Chung-Cheng University, Chia-Yi, Taiwan, ROC
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Fig. 1. Fraud detection model of Zipf Analysis.



15

ZIPF’s RANK AND ZIPF’s LAW
FROM COMPLEXITY

e I suggest that (at least in some situations) Zipf’s law
emerges as the combined effect of two factors:

(A) Rank ordering coincides with the ordering with respect to the
growing (exponential) Kolmogorov complezity K(w) up to a factor

exp (O(1)).

(B) The probability distribution producing Zipf’s law is (an ap-
prozimation to) the L. Levin a priori distribution.



16

If we accept (A) and (B), then Zipf’s law follows from two
basic properties of Kolmogorov complexity:

(a) rank of w defined according to (A) is exp (O(1)) - K(w).

(b) L. Levin’s a priori distribution assigns to an object w proba-
bility ~ KP(w)~! where KP is the exponentiated prefix Kolmogorov
complexity, and we have, up to exp (O(1))—factors,

K(w) < KP(w) < K(w) -log' ™ K(w)
with arbitrary € > 0.

e NB A probability distribution on infinity of objects can-
not be constructed directly from K: the series ) K(m)™!
diverges. However, on finite sets of data the small discrep-
ancy is additionally masked by the dependence of both K
and KP on the choice of an optimal encoding.
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e COMPLEXITY AS EFFORT. The picture described
above agrees with Zipf’s motto “minimization of effort”,
but reinterprets the notion of effort: its role is now played
by the logarithm of the Kolmogorov complexity that is, by
the length of the maximally compressed description of an
object.

Such a picture makes sense especially if the objects sat-
isfying Zipf’s distribution, are generated rather than simply
observed.
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PART IV: ERROR-CORRECTING CODES
AND PHASE TRANSITIONS

e BASIC NOTATION:
Alphabet A:= a finite set of cardinality q > 2.
Code C C A™ := a subset of words of length n.

Hamming distance between two words:

d((ai), (b,)) = C&I‘d{’i = (1, S ,'I’I,) I a; # bz}



Code parameters: cardinality of the alphabet ¢ and

n(C):=n, k(C):=k:= [log,card(C)],
d(C) :== d =min{d(a,b)|a,b e C,a # b}.

Relative distance and Transmission rate :

5(C) = %, R(C)

_ k©)
— n(C)’

Briefly, C is an [n, k, d],—code.

19
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SOURCE DATA
Encoding: {

A sequence
of code words

Noisy channel: d

Sequence of
(corrupted) code words

Error correction: 4

(Ideally) sequence of
initial code words

Decoding: 4

TRANSMITTED DATA
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Examples: Morse code and Barcodes

1. & dash iz equasl to three dots,

2. The space hetween parts of the same letter is agqual te ane dot.
3. The space betwaen two letters is equal to three dots.

4. The space between two wonds is equal ta seven dots.

Samuel F. B. Morse
(from 1836 on)

Alphabet: {dash, dot, space},
q=3.

Block length: n =7

d =7: (FEzercise)

Norman J. Woodland

(from 1949 on):
“His [...]inspiration came from Morse

code, and he formed his first
barcode from sand on the beach.

I just extended the dots and dashes
downwards and made narrow lines
and wide lines out of them”

Ue o mam
Veeoo mm
Weo ma mem
X o o mum
Y mmm o mum mum
Zommwme o

[ B N}
¢
4|

® & o

LI R

*e 90
e v o
LN IR
L8 B N J

QWD I W k=
e

ISBN 978-3-16-148410-0

9783161

484100

A 13-digit ISBN, 978-3-16-148410-0, as
represented by an EAN-13 bar code.
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e Explaining terms:

(Minimal) relative distance and Transmission Rate :

_ 4C)
— n(C)’

[£(C)]

6(C) : = WO

R(C)

Minimal Relative Distance must match channel’s noisiness:
probability of corruption of one letter.

Transmission rate is the share of meaningful (code) words;
their number must be maximized for any given relative dis-
tance.
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e A good code must maximize minimal relative distance
when the transmission rate is chosen.

¢ One more property of good codes: they must admit
efficient algorithms of encoding, decoding and error—correction.

How this can be achieved: consider structured codes.
Typical choice:

e Linear codes := linear subspaces of Fy.



e Code points:

[n,k,d); — code C +— Pc:= (R(C),4(C))
R

I
.
=
3|3
S
Q
N——

+

1-1/9,
How a finite pixel plot of all code points

might look (¢ fixed)
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Explanations to the picture :

e DEFINITION. Multiplicity of a code point is the number
of codes that project onto it.

e THEOREM (Yu.M.,1981 + 2011). There exists such a
continuous function «,(d), ¢ € [0,1], that

(i) The set of code points of infinite multiplicity is exactly
the set of rational points (R,d) € [0,1]? satisfying R < a,(9).
The curve R = o,(6) is called the asymptotic bound.
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(ii) Code points z of finite multiplicity all lie above the
asymptotic bound and are called isolated ones:

for each such point there is an open neighborhood con-
taining r as the only code point.

(iii) The same statements are true for linear codes, with,
a possibly, different asymptotic bound R = o"(6).



27

ASYMPTOTIC BOUNDS FROM COMPLEXITY

e Oracle assisted approximate computation of the asymptotic
bound.

— The set Codes, of all g—ary codes in a fixed alphabet A
is a constructive world.

— CLAIM. If an oracle produces for us elements of Codes,
in their Kolmogorov order, then we can write an oracle
assisted algorithm that for each “pixel size” N~! enumerates
all code points of the form

(k/N,d/N), a,d€Zy

CF. PICTURE ON PAGE 2
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e Partition function for codes involving complexity.

— The function «,(d) is continuous and strictly decreasing
for e [1,1—q71).

Hence the limit points domain R < o4(d) can be equally
well described by the inequality § < ,(R) where f, is the
function inverse to a,.

—Fixan ReQn(0,1). For Ac QN (0,1), put

Z(R,A;f) = > K, (C)7PH O,
C: R(C)=R,A<Lé(C)<1

where K, is an exponential Kolmogorov complexity on Codes,.
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e Theorem. (i) If A > §,(R), then Z(R, A;3) is a real ana-
lytic function of 5.

(ii) If A < B,(R), then Z(R, A; ) is a real analytic function
of g for 5 > B,(R) such that its limit for g — §,(R) — +0 does
not exist.

e Thermodynamical analogies.

— The argument [ of the partition function corresponds
to the inverse temperature.

— The transmission rate R corresponds to the density p.

— Our asymptotic bound transported into (T' = 87!, R)—
plane as T' = (3,(R) ! becomes the phase transition boundary
in the (temperature, density)—plane.
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Can we see the asymptotic bound

plotting the set of (linear) code points of bounded size?

|
|
|

NO, we will see a cloud of points

concentrating near the Varshamov—Gilbert bound



PART V. COMPLEXITY
IN QUANTUM COMPUTING ?
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HOW'S YOUR
QUANTUM COMPUTER
PROTOTYPE COMING

ALONG?

GREAT!

THE PROJECT EXISTS
IN A STIMULTANEOUS
STATE OF BEING BOTH
TOTALLY SUCCESSFUL
AND NOT EVEN
STARTED.

CAN I THAT'S

OBSERVE A TRICKY
IT? QUESTION,
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