PHYSICS IN THE WORLD OF IDEAS: COMPLEXITY AS ENERGY

Yuri I. Manin

PLAN

PART I: MODERN META-PHYSICS: STRUCTURE OF PHYSICAL LAWS

PART II: KOLMOGOROV COMPLEXITY

PART III: ZIPF'S LAW AS "MINIMIZATION OF EFFORT"

PART IV: ERROR–CORRECTING CODES AND PHASE TRANSITIONS

PART V: COMPLEXITY IN QUANTUM COMPUTING?

PART I. MODERN META-PHYSICS: STRUCTURE OF PHYSICAL LAWS

- An isolated system : configuration/phase space X.
- Energy/action : function(al)s $E, S : X \to \mathbf{R}$.
- Classical partition function/quantum evolution :

$$Z_T := \int_X e^{-E(x)/T} Dx$$
 vs $Z = \int_X e^{itS(x)} Dx$

• Probability density/quantum evolution operator :

$$\frac{1}{Z_T}e^{-E(x)/T}Dx$$
 vs $\frac{1}{Z}e^{itS(x)}$

NB Inverse temperature $T \ll 1$ imaginary time it!

• Symmetries, scale invariance etc.

PART II: KOLMOGOROV COMPLEXITY

Zoo of complexities:

Logarithmic

of combinatorial objects

Kolmogorov complexity

Exponential

of computable functions

An intuitive description:

 \bullet Logarithmic Kolmogorov complexity of ω is defined as

the measure of compressibility of $\omega :=$ the length of the shortest program that can generate ω

A representative example:

 $\omega := an integer N > 0$, represented by N written dashes.

The length of its compressed description is $\leq \log_2 N + c$, and its exponential Kolmogorov complexity is $\leq C N$.

GRAPH OF THE Log-COMPLEXITY OF NATURALS

Symmetry group and fractality

- Symmetry group S_{∞}^{rec} : for any totally recursive permutation $\sigma: \mathbb{Z}_+ \to \mathbb{Z}_+$, there exists a constant $c = c(\sigma)$ such that difference of log-complexities of x and $\sigma(x)$ is < c.
- Fractality: For any infinite decidable subset $D \subset \mathbf{Z}_+$, the graph of log-complexity restricted upon D has, up to additive O(1), the same form as the total graph.

Example:
$$D := \{n^{n} \cdot (n \text{ times}) \mid n = 1, 2, 3, ... \}$$

• The standard application of symmetry: one can define complexity for any objects of any infinite "constructive world" X, for example, a language in the sense of comp. sci.

X comes with a computable numbering, and arbitrariness in its choice (almost) does not influence the size of complexity.

• Exponential complexity and Kolmogorov order.

Let X be a constructive world. For any (semi)–computable function $u: \mathbb{Z}_+ \to X$, the (exponential) complexity of an object $x \in X$ relative to u is

$$K_u(x) := \min \{ m \in \mathbf{Z}_+ \, | \, u(m) = x \}.$$

If such m does not exist, we put $K_u(x) = \infty$.

• CLAIM: there exists such u ("an optimal Kolmogorov numbering", or "decompressor") that for each other v, some constant $c_{u,v} > 0$, and all $x \in X$,

$$K_u(x) \le c_{u,v} K_v(x).$$

This $K_u(x)$ is called exponential Kolmogorov complexity of x.

A Kolmogorov order of a constructive world X is a bijection $K = K_u : X \to \mathbf{Z}$ arranging elements of X in the increasing order of their complexities K_u .

• WARNINGS :

- Any optimal numbering is only partial function, and its definition domain is not decidable.
- Kolmogorov complexity K_u itself is <u>not computable</u>. It is the lower bound of a sequence of computable functions.
- Kolmogorov order of \mathbf{Z}_+ cardinally differs from the natural order in the following sense: it puts in the initial segments very large numbers that can be at the same time Kolmogorov simple.
 - Example: let $a_n := n^{n^{\cdot^{\cdot^{\cdot^{\cdot^{n}}}}}}$ (n times). Then $K_u(a_n) \le cn$ for some c > 0.

• MY CENTRAL ARGUMENT IN THIS TALK:

I will argue that there are natural observable and measurable phenomena in the world of information that can be given a mathematical explanation, if one postulates that logarithmic Kolmogorov complexity plays a role of energy.

I will consider two examples: Zipf's Law and asymptotic bounds in the theory of error–correcting codes.

PART III: ZIPF LAW AS "MINIMIZATION OF EFFORT"

• Consider a corpus of texts in a given language, make the list of words occurring in them and the numbers of occurrences. Range these words in the order of *diminishing* frequencies. Define the Zipf rank of a word as its number in this ordering.

• Zipf's Law (1935, 1949):

FREQUENCY

IS INVERSELY PROPORTIONAL TO THE RANK

 $\label{eq:picture:} \textbf{Zipf's distribution of Russian words(logarithmic scale)}$

- <u>Universality of Zipf's law</u>: the law is empirically observed in very different databases, that allow one to calculate frequency of occurrence of certain *patterns* ("words") in certain *massifs of data*.
- Example on the next page: patterns in financial audit data.
- "Unlike the central limit theorem [...] this law is primarily an empirical law; it is observed in practice, but mathematicians still do not have a fully satisfactory and convincing explanation for how the law comes about, and why it is so universal."

Terence Tao

Contents lists available at ScienceDirect

Decision Support Systems

journal homepage: www.elsevier.com/locate/dss

An investigation of Zipf's Law for fraud detection (DSS#06-10-1826R(2))

Shi-Ming Huang ^a, David C. Yen ^{b,*}, Luen-Wei Yang ^a, Jing-Shiuan Hua ^c

- ^a Department of Accounting & Information Technology, National Chung-Cheng University, Chia-Yi, Taiwan, ROC
- b Department of DSC & MIS, Miami University, Oxford, OH 45056, United States
- ^c Department of Information Management, National Chung-Cheng University, Chia-Yi, Taiwan, ROC

Fig. 1. Fraud detection model of Zipf Analysis.

ZIPF's RANK AND ZIPF's LAW FROM COMPLEXITY

- I suggest that (at least in some situations) Zipf's law emerges as the combined effect of two factors:
- (A) Rank ordering coincides with the ordering with respect to the growing (exponential) Kolmogorov complexity K(w) up to a factor exp(O(1)).
- (B) The probability distribution producing Zipf's law is (an approximation to) the L. Levin a priori distribution.

If we accept (A) and (B), then Zipf's law follows from two basic properties of Kolmogorov complexity:

- (a) rank of w defined according to (A) is $exp(O(1)) \cdot K(w)$.
- (b) L. Levin's a priori distribution assigns to an object w probability $\sim KP(w)^{-1}$ where KP is the exponentiated prefix Kolmogorov complexity, and we have, up to exp(O(1))-factors,

$$K(w) \leq KP(w) \leq K(w) \cdot \log^{1+\varepsilon} K(w)$$

with arbitrary $\varepsilon > 0$.

• NB A probability distribution on infinity of objects cannot be constructed directly from K: the series $\sum_m K(m)^{-1}$ diverges. However, on finite sets of data the small discrepancy is additionally masked by the dependence of both K and KP on the choice of an optimal encoding.

• COMPLEXITY AS EFFORT. The picture described above agrees with Zipf's motto "minimization of effort", but reinterprets the notion of effort: its role is now played by the logarithm of the Kolmogorov complexity that is, by the length of the maximally compressed description of an object.

Such a picture makes sense especially if the objects satisfying Zipf's distribution, are generated rather than simply observed.

PART IV: ERROR-CORRECTING CODES AND PHASE TRANSITIONS

• BASIC NOTATION:

Alphabet A:= a finite set of cardinality $q \geq 2$.

<u>Code</u> $C \subset A^n :=$ a subset of words of length n.

Hamming distance between two words:

$$d((a_i), (b_i)) := \operatorname{card}\{i \in (1, \dots, n) \mid a_i \neq b_i\}.$$

Code parameters: cardinality of the alphabet q and

$$n(C):=n, \quad k(C):=k:=[\log_q\mathrm{card}(C)],$$

$$d(C):=d=\min{\{d(a,b)\,|\,a,b\in C,a\neq b\}}.$$

$\underline{\textbf{Relative distance and Transmission rate}}:$

$$\delta(C) := \frac{d(C)}{n(C)}, \quad R(C) = \frac{k(C)}{n(C)}.$$

Briefly, C is an $[n, k, d]_q$ -code.

SOURCE DATA

Encoding:

 \downarrow

A sequence of code words

Noisy channel:

1

Sequence of (corrupted) code words

Error correction:

1

(Ideally) sequence of initial code words

Decoding:

1

TRANSMITTED DATA

Examples: Morse code and Barcodes

Samuel F. B. Morse (from 1836 on)

Alphabet: {dash, dot, space},

q = 3.

Block length: n = 7

d = ?: (Exercise)

Norman J. Woodland (from 1949 on):
"His [...]inspiration came from Morse code, and he formed his first barcode from sand on the beach.

I just extended the dots and dashes downwards and made narrow lines and wide lines out of them"

- 1. A dash is equal to three dots.
- 2. The space between parts of the same letter is equal to one dot
- 3. The space between two letters is equal to three dots.
- 4. The space between two words is equal to seven dots.

A 13-digit ISBN, 978-3-16-148410-0, as represented by an EAN-13 bar code.

• Explaining terms:

(Minimal) relative distance and Transmission Rate:

$$\delta(C) := \frac{d(C)}{n(C)}, \quad R(C) = \frac{[k(C)]}{n(C)}.$$

Minimal Relative Distance must match channel's noisiness: probability of corruption of one letter.

Transmission rate is the share of meaningful (code) words; their number must be maximized for any given relative distance.

- A good code must maximize minimal relative distance when the transmission rate is chosen.
- One more property of good codes: they must admit efficient algorithms of encoding, decoding and error-correction.

How this can be achieved: consider structured codes. Typical choice:

• <u>Linear codes</u> := linear subspaces of \mathbb{F}_q^n .

• Code points:

How a finite pixel plot of all code points might look (q fixed)

Explanations to the picture:

- DEFINITION. Multiplicity of a code point is the number of codes that project onto it.
- THEOREM (Yu.M.,1981 + 2011). There exists such a continuous function $\alpha_q(\delta)$, $\delta \in [0,1]$, that
- (i) The set of code points of <u>infinite multiplicity</u> is exactly the set of rational points $(R, \delta) \in [0, 1]^2$ satisfying $R \leq \alpha_q(\delta)$.

The curve $R = \alpha_q(\delta)$ is called the asymptotic bound.

(ii) Code points *x* of <u>finite multiplicity</u> all lie above the asymptotic bound and are called <u>isolated ones</u>:

for each such point there is an open neighborhood containing x as the only code point.

(iii) The same statements are true for linear codes, with, a possibly, different asymptotic bound $R = \alpha_q^{lin}(\delta)$.

ASYMPTOTIC BOUNDS FROM COMPLEXITY

- Oracle assisted approximate computation of the asymptotic bound.
- The set $Codes_q$ of all q-ary codes in a fixed alphabet A is a constructive world.
- CLAIM. If an oracle produces for us elements of $Codes_q$ in their Kolmogorov order, then we can write an oracle assisted algorithm that for each "pixel size" N^{-1} enumerates all code points of the form

 $(k/N, d/N), \quad a, d \in \mathbf{Z}_+$

CF. PICTURE ON PAGE 24

- Partition function for codes involving complexity.
- The function $\alpha_q(\delta)$ is continuous and strictly decreasing for $\delta \in [1, 1-q^{-1})$.

Hence the limit points domain $R \leq \alpha_q(\delta)$ can be equally well described by the inequality $\delta \leq \beta_q(R)$ where β_q is the function inverse to α_q .

- Fix an $R \in \mathbf{Q} \cap (0,1)$. For $\Delta \in \mathbf{Q} \cap (0,1)$, put

$$Z(R,\Delta;\beta) := \sum_{C: R(C) = R, \Delta \le \delta(C) \le 1} K_u(C)^{-\beta + \delta(C) - 1},$$

where K_u is an exponential Kolmogorov complexity on $Codes_q$.

- Theorem. (i) If $\Delta > \beta_q(R)$, then $Z(R, \Delta; \beta)$ is a real analytic function of β .
- (ii) If $\Delta < \beta_q(R)$, then $Z(R, \Delta; \beta)$ is a real analytic function of β for $\beta > \beta_q(R)$ such that its limit for $\beta \beta_q(R) \to +0$ does not exist.
 - Thermodynamical analogies.
- The argument β of the partition function corresponds to the inverse temperature.
 - The transmission rate R corresponds to the density ρ .
- Our asymptotic bound transported into $(T = \beta^{-1}, R)$ –
 plane as $T = \beta_q(R)^{-1}$ becomes the phase transition boundary
 in the (temperature, density)–plane.

Can we see the asymptotic bound plotting the set of (linear) code points of bounded size?

NO, we will see a cloud of points concentrating near the Varshamov–Gilbert bound

PART V. COMPLEXITY IN QUANTUM COMPUTING?

REFERENCES

- [A] S. Aaronson. NP-complete problems and physical reality. arXiv:quantum-ph/0502072
- [Lev] L. A. Levin, Various measures of complexity for finite objects (axiomatic description), Soviet Math. Dokl. Vol.17 (1976) N. 2, 522–526.
- [LiVi] M. Li, P. M. B. Vitányi, An Introduction to Kolmogorov Complexity and its Applications, 3rd edn. Springer, New York, 2008.
- [Man1] Yu. I. Manin, What is the maximum number of points on a curve over F₂? J. Fac. Sci. Tokyo, IA, Vol. 28 (1981), 715–720.
- [Man2] Yu. I. Manin. Zipf's law and L. Levin's probability distributions. Functional Analysis and its Applications, vol. 48, no. 2, 2014. DOI 10.107/s10688-014-0052-1. arXiv:1301.0427
- [Man3] Yu. I. Manin, A course in Mathematical Logic for Mathematicians, 2nd ed., Springer, New York, 2010.
- [ManMar] Yu. I. Manin, M. Marcolli. Error-correcting codes and phase transitions. Mathematics in Computer Science, Vol. 5 (2011) 133-170. arXiv:0910.5135

[ManVla] Yu. I. Manin. S.G. Vladut, Linear codes and modular curves. J. Soviet Math., Vol. 30 (1985), 2611–2643.

[VlaNoTsfa] S. G. Vladut, D. Yu. Nogin, M. A. Tsfasman. Algebraic geometric codes: basic notions. Mathematical Surveys and Monographs, 139. American Mathematical Society, Providence, RI, 2007.

[Z1] G. K. Zipf. The Psychobiology of Language. Houghton-Mifflin, 1935

[Z2] G. K. Zipf. Human Behavior and the Principle of Least Effort. Addison-Wesley, 1949.