
D Charlton / Birmingham – May 2017 – Ockham Lecture 1

Beyond the Higgs discoveryBeyond the Higgs discovery
The coming of age of ATLAS and the CERN LHCThe coming of age of ATLAS and the CERN LHC

Dave CharltonDave Charlton
University of BirminghamUniversity of Birmingham

2424thth  Ockham Lecture,Ockham Lecture,
Merton CollegeMerton College

15 May 201715 May 2017



D Charlton / Birmingham – May 2017 – Ockham Lecture 2

Beyond the Higgs discoveryBeyond the Higgs discovery
The coming of age of ATLAS and the CERN LHCThe coming of age of ATLAS and the CERN LHC

Dave CharltonDave Charlton
University of BirminghamUniversity of Birmingham

Ockham Lecture, Merton CollegeOckham Lecture, Merton College
15 May 201715 May 2017

Outline

Where we start: the Higgs discovery
The LHC and ATLAS - coming of age

The Higgs boson, beyond the discovery
Beyond the Higgs

A look to the future
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Where we start:Where we start:
the Standard Modelthe Standard Model
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The Standard Model, SMThe Standard Model, SM
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Higgs Discovery (ATLAS and CMS)Higgs Discovery (ATLAS and CMS)
July 4th 2012 (CERN and Melbourne)
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July 2012 – the new bosonJuly 2012 – the new boson

Events weighted according to 
S/B in selected event category

Fully reconstruct H→γγ final state
Excellent γγ mass resolution crucial, as 
well as γ-ID to reject jet/π0 background
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July 2012 – the new bosonJuly 2012 – the new boson

Fully reconstruct H ZZ* 4→ → ℓ final state
“Golden channel” - excellent mass resolution and signal/background~1
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July 2012 – the new bosonJuly 2012 – the new boson

Combining γγ, 4ℓ and WW* channels
Overall significance (end July 2012) 5.9σ
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July 2012 – the new bosonJuly 2012 – the new boson
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>7200 citations
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Questions crystallise...Questions crystallise...
About the identity of the H(125) particle

● Is it a Higgs boson?
● Is it unique?
● Does it couple to the vector bosons with 

the right coupling strength and 
structure?

● Is it also responsible for giving mass to 
the fermions?

● Is the H(125) the only mechanism for 
electroweak symmetry-breaking?
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Questions crystallise...Questions crystallise...
About the identity of the H(125) particle

● Is it a Higgs boson?
● Is it unique?
● Does it couple to the vector bosons with 

the right coupling strength and 
structure?

● Is it also responsible for giving mass to 
the fermions?

● Is the H(125) the only mechanism for 
electroweak symmetry-breaking?

We can now study these questions via 
precision measurements of the Higgs sector, 

and of EWSB in general
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Questions crystallise...Questions crystallise...
About the identity of the H(125) particle

● Is it a Higgs boson?
● Is it unique?
● Does it couple to the vector bosons with 

the right coupling strength and 
structure?

● Is it also responsible for giving mass to 
the fermions?

● Is the H(125) the only mechanism for 
electroweak symmetry-breaking?

● Why is the H so light?

tH H

t

Divergent corrections to the H mass from loops, 
cut off only if new physics enters at a mass scale 
close to the electroweak scale

“Hierarchy problem” / fine-tuning
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...others are not addressed...others are not addressed
Hard questions that we often forget to ask

● Why 3 generations of (light) fermions?
● Why such different fermion masses?

● The gauge theory descriptions of the 
electroweak and strong (QCD) sectors of 
the Standard Model are so similar
● Where is grand unification?
● Extra dimensions of space-time? Branes 

…? 

● Baryon asymmetry?
● Dark matter & energy?
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...others are not addressed...others are not addressed
Hard questions that we often forget to ask

● Why 3 generations of (light) fermions?
● Why such different fermion masses?

● The gauge theory descriptions of the 
electroweak and strong (QCD) sectors of 
the Standard Model are so similar
● Where is grand unification?
● Extra dimensions of space-time? Branes 

…? 

● Baryon asymmetry?
● Dark matter & energy?

Searching for new physics at 
the TeV scale may gain further 
insight to these questions – and 

to the hierarchy problem
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The LHC and ATLASThe LHC and ATLAS
Coming of AgeComing of Age



D Charlton / Birmingham – May 2017 – Ockham Lecture 17

17

LHC ring:
27 km circumference
~100 m underground

CERN main site

Large Large HadronHadron Collider Collider

Proton-proton & heavy-ion collisionsProton-proton & heavy-ion collisions

Lake Geneva Airport
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1232 superconducting main dipoles
Two-in-one coil design

Maximum B field 8.4 T (E
beam

=7 TeV)

Cooled to 1.9K with 90 tonnes of LHe

Each beam: 2800 
bunches each 
holding 1011 

protons
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The early days: ATLAS 
Collaboration formed in 1992

R&D in the 1990’s – construction 
started in 1997

Installation into cavern from 2003

LoI: 88 Institutions
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182 institutions in 38 countries
~2800 scientific authors, including ~1000 students
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Adelaide, Albany, Alberta, NIKHEF Amsterdam, Ankara, LAPP Annecy, Argonne NL, Arizona, UT Arlington, Athens, NTU Athens, UT Austin, Baku, IFAE Barcelona, 
Belgrade, Bergen, Berkeley LBL and UC, HU Berlin, Bern, Birmingham, UAN Bogota, Bologna, Bonn, Boston, Brandeis, Bratislava/SAS Kosice, Brazil Cluster, Brookhaven 
NL, Buenos Aires, Bucharest, Cambridge, Carleton, CERN, China IHEP-NJU-THU, China USTC-SDU-SJTU, Chicago, Chile, Clermont-Ferrand, Columbia, NBI Copenhagen, 

Cosenza, AGH UST Cracow, IFJ PAN Cracow, SMU Dallas, UT Dallas, DESY, Dortmund, TU Dresden, JINR Dubna, Duke, Edinburgh, Frascati, Freiburg, Geneva, Genoa, 
Giessen, Glasgow, Göttingen, LPSC Grenoble, Technion Haifa, Harvard, Heidelberg, Hiroshima IT, Hong Kong, NTHU Hsinchu, Indiana, Innsbruck, Iowa SU, Iowa, UC 
Irvine, Istanbul Bogazici, KEK, Kobe, Kyoto, Kyoto UE, Kyushu, Lancaster, UN La Plata, Lecce, Lisbon LIP, Liverpool, Ljubljana, QM London, RH London, UC London, 

Louisiana Tech, Lund, UA Madrid, Mainz, Manchester, CPPM Marseille, Massachusetts, MIT, Melbourne, Michigan, Michigan SU, Milano, Minsk NAS, Minsk NCPHEP, 
Montreal, McGill Montreal, RUPHE Morocco, FIAN Moscow, ITEP Moscow, MEPhI Moscow, MSU Moscow, Munich LMU, MPI Munich, Nagasaki IAS, Nagoya, Naples, New 

Mexico, New York, Nijmegen, Northern Illinois University, Novosibirsk BINP-NSU, NPI Petersburg, Ohio SU, Okayama, Oklahoma, Oklahoma SU, Olomouc, Oregon, LAL 
Orsay, Osaka, Oslo, Oxford, Paris VI and VII, Pavia, Pennsylvania, Pisa, Pittsburgh, CAS Prague, CU Prague, TU Prague, IHEP Protvino, Rome I, Rome II, Rome III, RAL-
STFC, DAPNIA Saclay, Santa Cruz UC, Sheffield, Shinshu, Siegen, Simon Fraser Burnaby, SLAC, South Africa Cluster, Stockholm, KTH Stockholm, Stony Brook, Sydney, 

Sussex, AS Taipei, Tbilisi, Tel Aviv, Thessaloniki, Tokyo ICEPP, Tokyo MU, Tokyo Tech, Tomsk SU, Toronto, Trento, TRIUMF, Tsukuba, Tufts, Udine/ICTP, Uppsala, UI 
Urbana, Valencia, UBC Vancouver, Victoria, Warwick, Waseda, Washington, Weizmann Rehovot, FH Wiener Neustadt, Wisconsin, Wuppertal, Würzburg, Yale, Yerevan

182 institutions in 38 countries
~2800 scientific authors, including ~1000 students
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ATLAS DetectorATLAS Detector

~110 M channels, with timing capable of separating particles from adjacent 
bunch-crossings (25ns)

7000t, 45m long x 25m diameter
Si+transition radiation tracker, 2T solenoid, LAr sampling 

calorimetry, large air-core toroid muon spectrometer
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The first decade of LHC operationThe first decade of LHC operation

Run-1: little 
data and low 

energy!

Run-2: 13 TeV,  
much more 

data

Run-3: 14 TeV, 
and doubled 
data sample

H
ig

h-
lu

m
i 

LH
C

Proton-proton centre-of-mass energy √s = 2 E
beam

LHC design √s = 14 TeV
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Why we push Why we push √√ss

√ ŝ=√ x1 x2 s∼Q

Partons (quarks, gluons) within the 
proton carry only a fraction, x, of the 
momentum of the proton

● Probability distribution described by 
parton density function (pdf), f(x,Q2)

● Parton-parton centre-of-mass energy

High     collisions are very rare√ ŝ

MSTW2008NLO arXiv:0901.0002
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Why we push Why we push √√ss

√ ŝ=√ x1 x2 s∼Q

Partons (quarks, gluons) within the 
proton carry only a fraction, x, of the 
momentum of the proton

● Probability distribution described by 
parton density function (pdf), f(x,Q2)

● Parton-parton centre-of-mass energy

High     collisions are very rare

● Parton-parton luminosity integrates 
over x

1
, x

2
 for a fixed 

→( d L (a ,b)
d ŝ )

√ ŝ

ŝ

J Huston

14 TeV

Σqq

gg

Σ(q+q)g
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Ratio of parton-parton 
luminosity for pp 

centre-of-mass energy
13 TeV / 8 TeV 

Why we push Why we push √√ss
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Total cross-section ratio: σ(13 TeV) / σ(8 TeV)

New physics 
models – 
search 
sensitivity 
grows hugely

Known “rarer” 
processes: yields 
grow significantly 
with energy

All collisions – cross-section grows 20%

Why we push Why we push √√ss
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We are here
Half-way through the “standard lumi LHC” era in time, 
still close to the start in terms of integrated luminosity

The first decade of LHC operationThe first decade of LHC operation

Run-1: little 
data and low 

energy!

Run-2: 13 TeV,  
much more 

data

Run-3: 14 TeV, 
and doubling 
data again
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2016 – a great production year2016 – a great production year

More integrated 
luminosity in 2016 
than in all previous 

years together!

Integrated luminosity ∫Ldt drives the signal event yield N
obs

N
obs

= σ εexp ∫Ldt

σ: cross-section
εexp: experimental efficiency
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2016 – a great production year2016 – a great production year

Peak luminosity well above design

Gradual and sustained increase in 
luminosity over the year

● Good prospects to be get close to 
2x1034cm-2s-1 (=twice design) in 
2017, if LHC cooling can take it

Production operation: many days 
with similar samples of 0.4-0.5 fb-1 
delivered

● With scheduled & unscheduled 
stops “as usual”..!

LHC design
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2017 – hot off the press2017 – hot off the press
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2017 – hot off the press2017 – hot off the press

10 May – beams 
colliding again at 

13 TeV

Expect to match or 
exceed 2016 

sample in each of 
2017 and 2018
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The Higgs boson, beyond The Higgs boson, beyond 
the discoverythe discovery
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H(125) production & decayH(125) production & decay
A 125 GeV Higgs boson is a convenient object experimentally – many 
production and decay modes should be measurable

● Is it the Standard Model Higgs or not?
● Production and decay processes probe couplings of H to different particles

Main (single H) 
production diagrams “ggF” dominates, but multiple 

processes accessible
(inclusive rates are not tiny)

“ggF”
ggF“VBF”

VBF

“ttH”
ttH“VH”

VH
Pr

od
uc

ti
on
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ro

ss
-s

ec
ti

on
 (

pb
)
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H(125) production modesH(125) production modes
Combined analysis of Run-1 data:
H(125) production & decays

With assumptions about decays, we can probe 
the different production processes 
(normalised rates “μ” (=1 in SM))

● Able to separate statistically the ggF 
and VBF processes

● Not yet VH or ttH at 5σ
● Observing ttH production is a key Run-2 

goal

These are not yet precision measurements – 
but few percent errors should be 

obtainable with the expected LHC samples
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H(125) production & decayH(125) production & decay
A 125 GeV Higgs boson is a convenient object experimentally – many 
production and decay modes should be observable

● Is it the Standard Model Higgs or not?
● Production and decay processes probe couplings of H to different particles

0.2% H  → γγ

Main decay modes

Discovery channels

Low branching fractions
BF(H ZZ* 4(e/→ → µ)) ~ 0.01%

BF(H→γγ) ~ 0.2%
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H(125) decay modesH(125) decay modes

Decay signal strengths relative to 
Standard Model “µ” (=1 in SM)

Combining ATLAS and CMS Run-1 
data, observed (at >5σ significance)

● H→γγ
● H ZZ*( 4→ → ℓ (ℓ=e,µ))
● H WW*(→ →ℓνℓν)
● H ττ→

Run-1 data not yet sensitive to the 
dominant H bb, or most rare, →
decays, e.g. to second generation 
fermions H→μμ, cc, ss
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H(125) coupling strengthsH(125) coupling strengths

Combined analysis of Run-1 data:
H(125) production & decays

Recast coupling strength results in 
terms of the strength of the couplings 
of the H to each particle type

Characteristic of the Higgs is that it 
couples to mass…
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H(125) – is it a scalar particle?H(125) – is it a scalar particle?
Spin-analysis of the decay product 
angular distributions

● Is this a spin-parity JP=0+ object?

Test statistic q 
sensitive to 
spin-parity 

(differs for each 
alternative 
hypothesis 

tested)

In all cases tested, 
strong preference for 0+ 

assignment

It is consistent with a 0+ 
scalar particle, and not 
with any other model 
tested (at >>95% CL)
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Mass of the H(“125”)Mass of the H(“125”)
Recall that m

H
 is a free parameter in the Standard Model

● To measure m
H
, we use γγ and 4ℓ decays, where we can reconstruct 

the mass event-by-event with high resolution
● Requires excellent understanding of energy scales for lepton/photons

Calibrate detector performance relative to simulations using very large and 
clean samples of decays of particles of known mass, here:

J/ψ,Υ,Z  ee/→ μμ

±0.5%

±1%
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Mass of the H(“125”)Mass of the H(“125”)

Already a precision measurement: 2 per-mille relative error – 
dominated by statistical not systematic uncertainties

Recall that m
H
 is a free parameter in the Standard Model

● To measure m
H
, we use γγ and 4ℓ decays, where we can reconstruct 

the mass event-by-event with high resolution
● Requires excellent understanding of energy scales for lepton/photons
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Measuring H(125) at 13 TeV in Run-2Measuring H(125) at 13 TeV in Run-2

σ = 59.0 +9.7
-9.2 (stat) +4.4

-3.5 (syst) pb
                      (SM: 55.5 +2.4

-3.4 pb)

2015 + part 2016

2015 + part 2016

ATLAS-CONF-2016-079

ATLAS-CONF-2016-081

Clear signals in γγ and 4ℓ
 → combined σ(pp H) at 13 TeV→
 → overall significance at 13 TeV ~10σ2015 + part 2016
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New: H 4→New: H 4→ ℓℓ full 2015+2016 statistics full 2015+2016 statistics

Results with full current 
statistics of 13 TeV data in 
H 4ℓ channel→

● Fiducial and differential 
cross-sections measured
● Illustrate with p

T
(H) 

distribution
● Statistics limited
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Candidate 
H ZZ*  ee→ → μμ

from 2016

Standard feature of 
Run-2 data – very 

high “pileup”, 
typically 30 pp 
interactions per 
bunch crossing
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Homing in on new H channelsHoming in on new H channels

2015
+

part
2016

Hunt for H b→ b decay 
in (W/Z)H associated 
production

● H  bb dominant decay BR~58%→
● Significance 0.4σ (exp 1.9σ)

2015 + part 2016 

ttH production
● Direct probe of ttH 

vertex
● 3 channels with 

2015+2016 data
● Combined: 2.8σ 

observed (exp 1.8σ)

ATLAS-CONF-2016-068
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Homing in on new H channelsHoming in on new H channels

Hunt for H b→ b decay 
in (W/Z)H associated 
production

● H  bb dominant decay BR~58%→
● Significance 0.4σ (exp 1.9σ)

ttH production
● Direct probe of ttH 

vertex
● 3 channels with 

2015+2016 data
● Combined: 2.8σ 

observed (exp 1.8σ)

ATLAS-CONF-2016-068

Observing these two channels 
remain key goals for Run-2

2015 + part 2016 

2015
+

part
2016
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Event selected in ttH multilepton analysis
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H→H→μμ – rare decay – 2μμ – rare decay – 2ndnd generation generation

Full 2015+2016 data, look for a 
peak in dimuon mass spectrum

● Analyse multiple event categories 
 improves sensitivity (not shown)→

No excess observed  place →
limits on signal strength μ

S
 

relative to Standard Model, 
combining also with (weaker) 
Run-1 results:

μ
S
 < 2.8 at 95% CL

(2.9 expected)

SM sensitivity requires a lot 
more data

ATLAS-CONF-2017-014

2015+2016 

Inclusive distributionInclusive distributionInclusive distribution

dimuon invariant mass m(μμ)
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Beyond the HiggsBeyond the Higgs
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Beyond the HiggsBeyond the Higgs

I. Precision measurements (W, Z, top, … …)
● Testing QCD predictions and event generator models
● Some cases probe for new physics in loops

II. Direct searches for new particles, new 
symmetries, and new interactions
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Detailed studies performed with 2011 data at 7 TeV: W+,W−, Z in e, µ decays

Precise W, Z production measurementsPrecise W, Z production measurements

High statistics data well 
described by simulation

Backgrounds under excellent 
control

arXiv:1612.03016

https://arxiv.org/abs/1612.03016
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Detailed studies performed with 2011 data at 7 TeV: W+,W−,Z in e, µ decays

Precise W, Z production measurementsPrecise W, Z production measurements

Differential cross-section as 
function of lepton scattering polar 
angle θ in lab frame – good 
separation between pdfs

Experimental errors better 
than theoretical/modelling 
uncertainties

arXiv:1612.03016

https://arxiv.org/abs/1612.03016
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First LHC analysis, using well-
understood 2011 data (7 TeV)

~15M W→ℓν decays

Used both lepton transverse momentum, 
p

T
(ℓ), and transverse mass, m

T
, as 

variables sensitive to m
W

● Lepton calibration using high statistics 
Z→ℓℓ sample

● Hadronic recoil (→p
T

miss) also calibrated 

against Z→ℓℓ
● LEP Z mass crucial input (2 MeV error)
● Detailed analysis of modelling 

uncertainties

W mass measurementW mass measurement
W→eν event

p
T
(e)

p
T

miss
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W mass measurementW mass measurement

W→eν

W→μν

First LHC analysis, using well-
understood 2011 data (7 TeV)

~15M W→ℓν decays

Used both lepton transverse momentum, 
p

T
(ℓ), and transverse mass, m

T
, as 

variables sensitive to m
W

● Lepton calibration using high statistics 
Z→ℓℓ sample

● Hadronic recoil (→p
T

miss) also calibrated 

against Z→ℓℓ
● LEP Z mass crucial input (2 MeV error)
● Detailed analysis of modelling 

uncertainties
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W mass resultsW mass results

Measurement precision of 19 MeV (0.024%) equals best previous, 
from CDF

Combining the e and μ channels, charge signs and methods, overall:

LEP

TevatronTevatron

ATLAS
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Electroweak precision testElectroweak precision test

Within the SM framework, m
W
 is related to other quantities via:

Δr includes radiative effects (loops), and so depends on m
H
 and m

top

Fits to precision electroweak 
data from LEP/SLD and others, 

plus the LHC m
H 
and 

Tevatron+LHC m
top

, provides a 

prediction of m
W

(“indirect measurement in the 
framework of the SM”)

W
H

WW W W
t

b
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Electroweak precision testElectroweak precision test

Within the SM framework, m
W
 is related to other quantities via:

Δr includes radiative effects (loops), and so depends on m
H
 and m

top

W
H

WW W W
t

b

Alternatively recast other 
results into a prediction of
m

W
 vs m

top
 (grey ellipse) 

Compare with direct 
measurements from ATLAS

Remarkable consistency – SM 
test at level of electroweak 

loop corrections
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Run-1 puzzle to describe inclusive diboson 
cross-sections

● Measurements tended to lie above next-to-
leading order (NLO) calculations

NNLO calculations  ~+20% corrections and →
better agreement

Example:
WZ leptonic decays

NNLO calculations 
describe data much 

better than NLO

This run-1 puzzle 
appears to be solved!

Massive diboson productionMassive diboson production

7% precision
arXiv:1606.04017

NNLO

NLO

WZ→ℓvℓℓ

g q΄

Z
W

q
NLO Z

W
NNLO

q

q΄

Z

W

q

q΄

Z

W
LO
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Single and double b-tagged tt b→ eνbμν events allow to measure tt 
cross-section and b-tagging efficiency simultaneously

Precision ±(3.9-4.4)% (7-13 TeV) betters NNLO+NNLL predictions (~5%)

tttt production production

arXiv:1606.02699

σ(tt) x 3.3 from 8 to 
13 TeV

NNLO+NNLL

2015

36 fb-1 @ 13 TeV
~30M tt produced

LO
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Search for new particles 
decaying into dijets

““Simple” search: two jet final stateSimple” search: two jet final state

Examples (at 95% CL):

m(q*) > 6.0 TeV
(Cf Run-1: 4.1 TeV)

2015+2016 

arxiv:1703.09127

 Dijet invariant mass spectrum m(jj)

https://arxiv.org/abs/1703.09127
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Highest-mass central dijet event - m(jj)=8.2 TeV
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Search for new physics in 
dijet angular distributions

Dijet angular distributionsDijet angular distributions

From high-mass angular 
distributions, place 95% CL 
lower limits on contact 
interaction scale (for η

LL
=+1/-1)

Λ > 13.1* / 21.8 TeV
*=also exclude 17.4-29.5 TeV

(Run-1: 8.1/12.0 TeV)
Scattering angle χ 

2015+2016 

?
SM



D Charlton / Birmingham – May 2017 – Ockham Lecture 68

Searches for Dark Matter are ongoing in Run-2
● Generic production with other objects
● Model-specific searches in SUSY models
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SUSY SearchesSUSY Searches



D Charlton / Birmingham – May 2017 – Ockham Lecture 70

A look to the futureA look to the future
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HL-LHC 14 TeV

“Run-2” 13 TeV “Run-3” 14 TeV

“LS-2” in 2019-2020

Upgrade of the LHC injectors
Training of LHC magnets to the 

field needed for 14 TeV operation
Significant upgrades to the 

experiments - “Phase-I”
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Phase-I upgradesPhase-I upgrades
LHC luminosity (collision rate) has 
exceeded LHC design already by 40%

Could exceed design luminosity by a 
factor ~2.5 in “Run-3”

 → Phase-1 upgrades give us better trigger 
performance (better selectivity in hardware 
within ~3 µs), and also provide better 
tracking close to the interaction point

Main ATLAS Phase-I upgrades:
● New inner pixel layer installed already in 2014
● New track & calorimeter trigger electronics
● New “small muon wheel” (9.3m diameter)

Big international hardware & electronics projects in 
their own right (total capital cost 35 MCHF) NSW design
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HL-LHC 14 TeV

“Run-2” 13 TeV “Run-3” 14 TeV

HL-LHC: “levelled” luminosity
5-7 times the original design, 

until ~2035

Accumulate 10x more data than 
in Runs 1-3 combined – era of 
high precision, and very high 

pileup!

Must upgrade detectors!

HL-LHC accelerator upgrade was 
approved by CERN Council in 
June 2016 (cost: 930M CHF)
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HL-LHC physics programmeHL-LHC physics programme
“Known goals”

● High-precision studies of the Higgs 
boson production and decay

● Rare Higgs boson decays
● HH (di-Higgs) production

● High precision studies in other areas – 
vector-boson scattering, top decays …

“Unknown goals”
● Measure and study properties of 

any/whatever new physics which was 
already discovered in Run-2/3

● Continue search programme: ~30% 
increase in mass reach
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Current ATLASCurrent ATLAS
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New central tracker (ITk)

Major readout electronics rework (~all detectors)
New trigger/readout architecture

New muon chambers (inner layer RPC)

Phase-IIPhase-II

High-granularity timing 
detector option, in 
front of LAr at high-|η|

Total capital cost ~250 MCHF
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Phase-II tracking detector: ITkPhase-II tracking detector: ITk

All silicon-sensor tracker: 
● inner layers pixel sensors
● outer layers strip sensors

Sensor and systems R&D ongoing for some years
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Beyond LHC: the FCC projectBeyond LHC: the FCC project

LHC
FCC-hh

SPS

Concept for a 100 TeV pp collider in a new 100km tunnel around CERN & 
Geneva, with luminosity up to 3x1035 cm-2 s-1

● direct new physics sensitivity to ~10 TeV scale, way beyond LHC
● additionally e+e— and e-p options
● could start operation around 2040
● large community developing, regular workshops, large attendances
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Beyond LHC: the FCC projectBeyond LHC: the FCC project
Concept for a 100 TeV pp collider in a new 100km tunnel around CERN & 
Geneva, with luminosity up to 3x1035 cm-2 s-1

● direct new physics sensitivity to ~10 TeV scale, way beyond LHC
● additionally e+e— and e-p options
● could start operation around 2040
● large community developing, regular workshops, large attendances

Detector concept
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Closing wordsClosing words
The ATLAS and CMS collaborations are 25 this year

● After a long gestation and now eight years since first collisions

The LHC is in “mature production” phase
● Energy close to design
● Luminosity beyond design, and increasing still

With the large Run-2 samples being collected, the physics 
programme is also changing to a more mature phase

● Luminosity doubling time becoming longer (1-2y)
● Simpler search topologies are being explored, results out or 

coming soon from 2015+2016 data
● Beyond that, the focus is shifting to more complex searches and 

precision measurements
● But – we only have about 2% of the final statistics from the LHC!
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Closing wordsClosing words
The ATLAS and CMS collaborations are 25 this year

● After a long gestation and now eight years since first collisions

The LHC is in “mature production” phase
● Energy close to design
● Luminosity well above design, and increasing still

With the large Run-2 samples being collected, the physics 
programme is also changing to a more mature phase

● Luminosity doubling time becoming longer (1-2y)
● Simpler search topologies are being explored, results out or 

coming soon from 2015+2016 data
● Beyond that, the focus is shifting to more complex searches and 

precision measurements
● But – we only have about 2% of the final statistics from the LHC!

The LHC remains the world’s discovery - and precision - 
particle collider at the energy frontier
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Dark matter search - Photon+Dark matter search - Photon+pp
TT

missmiss

Many signatures in which one can 
search for dark matter production at 
LHC

Many rely on producing it (and not 
observing it) with other particles  →
missing-momentum signature

One example: γ+p
T

miss

Comparison with direct DM search 
experiments is model-dependent, but is 
possible in specific models
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Dark matter searchesDark matter searches
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