Mathematicians are like Frenchmen:
whatever you say to them they
translate into their own language
and forthwith it means something
entirely different
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Introduction

e Algebra: theory of addition and multiplication of
numbers. More generally: theory of operations
such as multiplication and addition on
mathematical objects such as numbers, matrices,
and functions.

e Geometry: theory of Euclidean 3-dimensional
space. More generally: theory of structure of all
possible mathematical spaces, such as
topological, metric, and differential structure of
curved multidimensional spaces and fibre
bundles.



A very brief history

The Greeks regarded algebra and geometry as
quite distinct subjects.

Algebra: the mathematics of the discrete.
Geometry: the mathematics of the continuous.

Fermat and Descartes (earlyl17t Century) unified
the two into ‘analytic geometry’: functions
correspond to regions in a space.

Newton and Leibniz (late 17t Century) invented
calculus: an algebraic way of solving geometrical
problems, which was the royal road to modern
science.



The unreasonable effectiveness of
mathematics in the natural sciences

The miracle of the appropriateness of the
language of mathematics for the formulation
of the laws of physics is a wonderful gift which
we neither understand nor deserve.

Eugene Wigner



My explanation

Mathematics studies sets of simple rules (axioms)
which give rise to complex and interesting
structures

Nature has an interesting and complex structure

Scientists and Philosophers tend to think that the
underlying rules (laws) which give rise to this
interesting and complex structure are simple.

So it is not surprising that the structure of the
world is the same as (is isomorphic to) that of
some (not all!) mathematical systems



The sense in which nature might be
geometric or algebraic

 The previous explanation allows one to
maintain mathematical nominalism:
mathematical objects do not exist, only
physical ones do, but the physical objects
instantiate a structure that is isomorphic to

some of the structures that mathematicians
study.

e But which structures? Algebraic or geometric
ones (or both, or other ones....)?



What some famous old people had to
say on this matter

Geometry is the only science that it hath
pleased God to bestow on mankind

Thomas Hobbes



Philosophy is written in that great book which
ever lies before our eyes — | mean the universe
— but we cannot understand it if we do not first
learn the language and grasp the symbols, in
which it is written. This book is written in the
language of mathematics, and the symbols are
triangles, circles and other geometrical figures,
without whose help it is impossible to
comprehend a single word of it; without which
one wanders in vain through a dark labyrinth.

Galileo Galilei



Men of recent times, eager to add to the
discoveries of the ancients, have united specious
arithmetic with geometry. Benefitting from that,
progress has been broad and far-reaching if your
eye is on the profuseness of an output, but the
advance is less of a blessing if you look at the
complexity of its conclusions. For these
computations, progressing by means of
arithmetical operations alone, very often express
in an intolerably roundabout way quantities
which in geometry are designated by the drawing
of a single line.

Isaac Newton



Standard Newtonian Physics

* Space is 3-dimensional and Euclidean. l.e. there exist
‘Cartesian’ coordinates x,y,z such that the distance
between a location P with coordinates X0 Y prZp and a
location Q with coordinates x,y,,z, equals

V(XX )2+ (Y p-Yg) +(2,-24)).

e Time is one-dimensional and Euclidean. l.e. there
exist a ‘Cartesian’ coordinate t such that the size of
the time lapse between events E and F equals t-t..



Standard Newtonian Physics: The Contents
of Space and Time

 There is a gravitational field function ¢(x,y,z,t) and a

mass-density function p(x,y,z,t). W.r.t. Cartesian
coordinates x,y,z they satisfy:

32¢/Ax2+02/dy2+02dp/d22 =-kp.

 The Cartesian coordinates x(t), y(t), z(t) of a particle’s
trajectory satisfy:

02x/0t?=-cod/0x, 0%y/dt*=-cod/dy, 0%z/0t*=-cop/0z



Standard Newtonian Physics is rife with
algebraic and set theoretic objects

e A coordinate x(p) is a function from locations
in space to the real numbers

 The gravitational field ¢(x,y,z,t) is function

from quadruples of real numbers to real
numbers

e Differentiation is a map from functions to
functions



Why it is problematic to accept sets as
existing

* As soon as one accepts sets as existing one is
committed to the existence of a huge amount of
crazy objects: the empty set @, the set consisting

of the empty set {@}. Also: {{{@}}}, {{2},{{D}}, .....

 As soon as one accepts sets as existing there are
all sorts of facts which are true or false but for
which we can have no good reason to believe or
disbelieve them: claims about the existence of
infinitely large cardinals, the continuum
hypothesis, ......



It is prima facie objectionable for
numbers to occur in this way in physics

* [t seems strange to think that how heavy a
physical object is consists of some relation
between that physical object and a number,
i.e. an abstract object, and that how the
physical object physically behaves depends on
the relation that it stands it to such abstract

objects



e Moreover
these num

(pounds/ki

t seems hard to explain why aspects of
ners are conventional: different scales
ograms/ounces) correspond to

different numerical values of masses. So mass
values are really relations between physical
objects, SCALES and numbers? What are scales?
Abstract objects? Concrete objects? As soon as
you start to think of scales as concrete objects
that function as conventionally chosen standards
you are already halfway to the geometrical way

of thinking
present.

about mass values which | will now



The purely geometric features of time

Time-Between(l,,1,,15): Instant |, is between instant |, and
instant 1.

Time-Congruent(l,,l,, I5, I,): The temporal interval between
instants |, and |, is just as long as the temporal interval
between]I3and ﬁl

If one lays down a few simple axioms, one can show that one
can represent all the congruence and betweenness facts by a
function t(l), from instants | to real numbers, i.e. by a
coordinate representation of time,

That function, that coordinatisation of time, will be unique up
to linear transformations if one demands that the difference
in coordinates is equal when the intervals are congruent.



The geometric features of space

* Assume spatial betweenness and spatial congruence
relations subject to some simple axioms. One can
again prove representability of these betweenness

and congruence facts by triples of real numbers, i.e.
coordinates.

e |f one demands that the coordinate function
V(%% )Y, Yq) *+(2,2,)%)
takes equal values when straight line segments are

congruent then this coordinate representation is

unique up to linear transformations. These are the
Cartesian coordinates.



Example of an axiom

If xzy & Bet(xyz) & Bet(pgr) & Cong(xypq) &
Cong(yzgr) & Cong(xwps) & Cong(ywqs)
Then Cong(zwrs)




A geometrical representation of the
masses of particles

Assume the existence of a ‘Mass Space’
Assume that particles occupy locations in mass space.

Assume a Mass Betweenness relation and Mass Addition relation
between points in Mass Space, subject to certain axioms which give
Mass Space a geometrical structure

These relations again have a numerical representation as ‘Mass
values’ which is unique up to linear re-scaling if one demands that
differences in Mass values are identical when the Mass Space
intervals are congruent.

This explains
a) why Mass properties can be represented by real numbers

b) why this representation is conventional up to linear re-scalings,
i.e. why you can represent masses as numbers of pounds, or
kilograms, or .....



Same for gravitational fields

e Assume there is a gravitational field strength
space, and field strength betweenness
relations and fields strength addition relations
subject to certain axioms

e Assume an occupation relations between the
gravitational field and ordinary space and time
and gravitational field strength space



Completing the job

 One can prove that one can then write simple
axioms in terms of betweenness, congruence,
mass betweenness, mass congruence,
gravitational field-strength betweenness and
gravitational fields strength congruence which
are equivalent to standard Newtonian
gravitational theory.



General Relativity

Space-time is curved
Space-time does not split into space and time

The fundamental notion of distance is that of length
of path

Distances can be positive as well as negative.

Between any two points there exists a path of
arbitrarily large negative length; there is no shortest
path between points.



A problem for geometrisation

In General Relativistic space-time there are still
things analogous to straight lines, namely ‘geodesics

A geodesic is a path in space-time such that any
small variation of that path makes it longer (or
shorter).

But, there can be multiple geodesics between the
same pair or points. So one can not say: consider
‘the’ geodesic between points p and q.

So the notion of p lying between g and r (on ‘the’
geodesic that runs from g to r) does not make
straightforward sense in General Relativity.

’



A geodesic-based geometrisation strategy

e Useful fact: any general relativistic space-time can be divided
into overlapping patches P such that for any pair of points in a
single patch P there is a uniqgue geodesic between those two
points.

 Assume patch-dependent space-time betweenness and
space-time congruence relations.

e One can then prove a representation theorem: if a set of
patch dependent space-time betweenness and congruence
relations has a representation as a general relativistic space-
time, then that representation is unique up to global linear
multiplications of the metric tensor.



The contents of space-time

e Scalar fields on space-time: scalar field value betweenness
and addition relations between space-time points

e Vectors and vector fields. A vector at point p can be
represented by a pair of points p,q. Think of it as an arrow
stretching from p to q along the geodesic between p and q.
It’s length is just the length of the geodesic between p and q,
and its direction is the direction in which that geodesic
‘points’ at p. A vector field consists of a vector at each point p
In space-time.

e Caution: there is no path independent notion of vectors at
different points pointing in the same direction.



Completing the job

e Since we have a representation theorem,
we can in principle state the laws of
General Relativity in purely geometric
terms. But we have no idea as to how to
state these laws.

 Even worse: there are heuristic
arguments that such an axiomatisation
must be horribly, horribly complicated.



More reasons to dislike the geodesic approach
to geometrisation of GR

 In modern physics one starts off with a differentiable
manifold, a space that has topological and differential
structure. Metric structure is then introduced via a local
metric tensor field. Geodesics can then defined. While metric
structure can in principle be recovered from geodesic
structure, the metric tensor field seems natural and
fundamental, geodesic structure seems derivative.

e Many theories of modern physics, gauge theories in particular,
is set in spaces that do not have metric structure. We want to
be able to geometrise such theories too. In order to do this
we need to be able to geometrise differentiable manifolds.



What's a differentiable manifold?

It is a space with topological and
differential structure

Topological structure: notion of
continuous lines, connected
regions. This can be
nominalistically defined by
specifying which regions are
‘open’, subject to certain axioms
Differential structure:
distinguishes curves with ‘kinks’
from curves without a ‘kink’. And
it distinguishes once
differentiable from twice
differentiable curves. And so on.
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Curve

Twice differentiable: angles of tangents
change in a “differentiable’ manner.



Standard way to put differential structure
on a manifold

* Provide the manifold M with an ‘Atlas’, i.e. divide M up into
patches P, provide each patch with n coordinates, i.e. provide
a 1-1 mapping from each patch P of M to a patch of R". Or,
less crazily specific: specify an equivalence class of coordinate
systems, each of which is smooth w.r.t. each other.

e Then say thatacurvein M, i.e. a map from Rto alinein M, is
k times differentiable iff the map from R from R" induced by
an allowed coordinate system is k times differentiable.

 Note that all of this is rife with algebraic and set theoretic
objects.



Three strategies for geometrising
differential geometry (work by Cian
Dorr and me)

e Make do with only regions of space-time

 Assume additionally the existence of a scalar
field value space

 Assume additionally the existence of a vector
bundle space (which could be the tangent
bundle space)



Making do with regions in space

e First idea: to give a space differential structure we
just specify which lines, surfaces, etc in the space
are smooth. l.e. we assume a primitive property
(predicate) ‘Smoothness’ which applies to
regions. We lay down some axioms, and we say
that any assignment of smoothness properties to
regions that satisfies these axioms is a
differentiable structure for that space.

 Problem: one can prove that different differential
structures can have the same classification of
regions into smooth and non-smooth



Next attempt to make do with regions

 Have a physical representation in space of
vectors and co-vectors (1-forms). Assume that
vectors and co-vectors have a fundamental
property ‘Kosherness’, where intuitively a
‘Kosher’ vector is one that is tangent to a
smooth line, and a non-kosher one is not.
Then lay down axioms on ‘Kosherness’ so that
any set of Kosher vectors subject to these
axioms corresponds to a differentiable
manifold



Vectors and co-vectors as regions




The bad news

 We couldn’t find an axiomatisation using the
‘Kosherness’ predicate alone which
guarantees that the resulting structure is
isomorphic to a differentiable manifold. With
an additional predicate we could, but it was
very unnatural and complicated



Second approach: scalar value space

 This approach is inspired by axiomatisations of
differential geometry pioneered by Chevalley,
Nomizu, Sikorski and Penrose and Rindler.

 One can specify the differential structure of a
(topological) manifold by saying which scalar
functions on the manifold are smooth, subject to
certain axioms on smoothness.

e As it stands we cannot use this approach since it
makes use of functions (set theoretic entities)
from the manifold to the real numbers (algebraic
entities)



Our strategy

e We assume the existence of a physical space, scalar
value space. This space has a certain structure, which
we give by laying down certain simple axioms on
regions in this space in terms of the primitive
predicates ‘Addition’, ‘Positivity’ and ‘Unit’. One can
think of this space as consisting of points that can be
occupied (or not occupied) by scalar fields

e We then define ‘scalar functions’ as certain regions in
this space.

e Finally we lay down an analogy of Penrose and
Rindler’s axiom on the ‘Smoothness’ of such regions.



Pros and cons

 The axiomatisation is simple and equivalent to a
standard axiomatisation of differentiable manifolds

 We in effect imposed on scalar value space the same
algebraic structure as the real numbers have: Addition,
Positivity and Unit allow one to define the notion of
‘multiplying’ points in scalar value space.

e But we do not have set theoretic structure: we have no
need for sets, sets of sets, .... We also have no need for
the mathematical notion of functions and maps as sets
(ordered pairs). The only sense of functions and maps
that we need are regions in physical scalar value space.



Third strategy: assume the existence of
a vector bundle space (which could be
the tangent bundle)

 We assume the existence of a physical vector
bundle space. We do not need the existence of
scalar value space. A physical vector field is then
a region in this physical vector bundle space.

e This vector bundle space just has a vector space
structure (without inner product). We do not
need a structure analogous to multiplication in
order to characterise a differentiable manifold.

e The axiomatisation we give is, arguably, relatively
simple



Geometrising other aspects of modern
physics

e |tis easy to extend the above geometrical
axiomatisations to general relativity and gauge
theories, since these just need the basic
machinery of differential geometry

e How about quantum mechanics?

 That depends on your favourite formulation of
guantum mechanics.



For instance

e If you are a realist about wavefunctions, we
can geometrise it by specifying the
geometrical structure of the (complex) space
that wave-functions occupy.

e If you are a realist about Hilbert spaces, we
can geometrise this by giving the geometrical
structure of Hilbert spaces (in terms of a
vector space and inner product structure).



Algebraicising differential geometry

Again inspired by Penrose and Rindler style
axiomatisations of differential geometry we can also
take an algebraic approach.

We assume the existence of a ‘scalar function space’

Intuitively each complete scalar function is a point in
this space.

There two primitive relations between such points:
addition and multiplication.

These relations are algebraic relations. (Intuitively
between entire scalar functions over the manifold, but
on our approach they hold between the points in our
gigantic function space.)




Good news and bad news

e One can show that the set of all addition and
multiplication facts between entire scalar
functions uniquely determine the differential
structure of a manifold on which these functions
are imagined to be the smooth scalar functions

e We do not need any set theory.

e However, it is totally unclear how to characterise
axiomatically in terms of these addition and
multiplication relations the structure of particular
differentiable manifolds that we are interested in,
such as R*with its standard differential structure.



A false dichotomy?

 The fact that we might be able to exploit
Penrose and Rindler style axiomatisations of
differential geometry to give both a
geometrical axiomatisation and an algebraic
axiomatisation suggests that perhaps these
are two sides of the same coin: neither is
more correct than the other. The question
whether the structure of the world is algebraic
or geometric is a false dichotomy.



Duality of the algebraic/geometric
division?

e Often one can characterise a geometry
algebraically by giving the algebra of the
transformations that leave the (local; global is
harder) geometric structure invariant.
Similarly one can characterise certain algebras
by specifying certain a space with a
geometrical structure and then finding the
algebra of the transformations which leave
that (local or global) geometrical structure
invariant.



An example of duality

 One can do quantum field theory by giving the

structure of a Fock-space (Hilbert space), but one
also do it by specifying the structure of the
algebra of observables

 These two are connected by the ‘GNS-
representation theorem’. (Note that some
algebras of observables do not have a Hilbert-
space representation.)

e |tis not clear (to me at least) which allows for a
simpler axiomatisation




Tentative conclusion

e Geometrising is a pervasive feature of modern
physics, especially gauge theories. With hindsight we
can even think of ordinary physical space as just
another case of geometrising, namely the
geometrising of the position properties of objects.

 We can geometrise differential geometry, and many
other theories of modern physics, despite the fact
that standard formulations make extensive use of
real numbers, functions, functions of functions and
so on up the set theoretic hierarchy.



But

 We might also be able to algebraicise
differential geometry and other modern
theories of physics

e |f these axiomatisations turn out to be equally
simple and natural then perhaps the
dichotomy between algebra and geometry is a
false dichotomy after all....



